Temporal and Spatial Variations in Fugitive Dust Concentrations in the San Joaquin Valley

Richard J. Countess & Susan J. Countess Countess Environmental, Westlake Village, CA

> 22nd Annual AAAR Conference Anaheim, CA October 20-24, 2003

- Background
- Temporal and spatial variations in fugitive dust concentrations
- Impact of fugitive dust on mass concentrations
- Diurnal variation in fugitive dust concentrations
- Size distribution of fugitive dust
- Reconciling ambient measurements with emissions inventory
- Transportable fraction
- Conclusions

Background

- San Joaquin Valley Air Basin is classified by EPA as a "serious" nonattainment area for PM10
- Fugitive dust emissions account for ~75% of the PM10 inventory
- This paper summarizes the contribution of fugitive dust to ambient PM10 and PM2.5 levels in the SJVAB based on an analysis of CRPAQS data

Calculation of Fugitive Dust Concentrations

$$[FD] = 1.89 [AI] + 2.14 [Si] + 1.40 [Ca] + 1.87 [Fe] + 1.67 [Ti]$$

- Assumes major elements associated with soil are present as their predominant oxides
- Factor for Fe includes a term to account for K associated with soil, equal to the total K measured by XRF minus the soluble K associated with vegetative combustion measured by Atomic Absorption

Temporal Variation in PM10 Fugitive Dust Concentrations at 7 Sites (12/99 – 1/01)

PM10 FD at Oildale vs. Bakersfield $(y = 0.76 \text{ x}; R^2 = 0.772; N = 58)$

Temporal Variation in PM10 Fugitive Dust/Mass Ratios (12/99-1/01)

Average Diurnal Variation in PM2.5 Fugitive Dust Concentrations During Winter Intensive (five sampling periods per day)

Diurnal Variation in PM2.5 Fugitive Dust Concentrations During Winter Intensive (five sampling periods per day)

Date (time)

Average Fugitive Dust Size Distribution at Angiola and Fresno During the Winter Intensive

Reconciling Contribution of Fugitive Dust to PM10 Mass: Measurements vs. Inventory

- 1° Emissions inventory: FD/Mass = 0.78
- Ambient measurements: FD/Mass = 0.51

Therefore, need to account for secondary aerosol formation and coarse aerosol loss

PM10 Fugitive Dust Concentrations in Kings County During the Fall Intensive

Transportable Fraction Based on Ambient Measurements in Kings County

Ratio of concentrations at far downwind site (H43) versus near downwind site (SFE), 1 mile apart

- Mass: 0.85
- Ammonium nitrate & ammonium sulfate: 0.98
- Organic aerosol species: 0.85
- Elemental carbon: 1.00
- Fugitive dust: 0.72

(TF based on fractional land cover = 0.74)

Conclusions Regarding FD Concentrations

- Log-normally distributed
- Large temporal and spatial variations due to different sources and different source strengths:
 - highest in Fall
 - low after precipitation
 - higher on weekdays than weekends (20 vs. 14 μ g/m³)
 - in the Winter, generally highest in the afternoon
- Accounts for ~50% of PM10 mass on annual basis:
 - ~70% between April and October
 - ~30% for rest of year when 2° ammonium nitrate predominates

Conclusions Regarding Fugitive Dust

- Majority of fugitive dust is in the coarse size fraction
- Reconciling ambient measurements with emissions inventory requires accounting for secondary aerosol formation and deposition losses for large particles
- Estimate of transportable fraction based on TFs assigned to different land cover categories was in excellent agreement with ambient measurements